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Hypersonic flow is considered past a body from within which a magnetic 

field is excited. The field acts on the gas that becomes electrically 

conducting as a result of thermal ionization occurring on transition 

across the strong shock wave ahead of the body. In a majority of the 

papers appearing recently (a bibliography can be found, e.g. [ 1 1 ). the 

behavior of the flow of a conducting fluid is studied in the vicinity of 

the forward critical point of a blunt body; here the effect of a strong 

imposed magnetic field on the general flow picture is studied. The cases 

of flow past bodies of rectilinear shape - the wedge and cone - are con- 

sidered in detail when the magnetic field intensity vector is directed 

perpendicular to the surface of the body, The method of solution is based 

on the assumption that the perturbed zone between the body and the shock 

wave is narrow [ 2,5 1 . The forces acting on the body are determined. As 

follows from the solution, for a sufficiently strong field the magnetic 

drag force has the same order of magnitude as the gasdynamic force, de- 
spite the narrowness of the zone of perturbed flow on which the magnetic 

field acts. 

It is shown that under certain conditions the flow may separate from 

the wall. The point of magnetic separation from the surface of the body 
is determined. With increase of the imposed field this point moves up- 

stream: therefore using strong fields leads to the possibility of creat- 

ing a separated region around the body which leads to an increase in the 

drag of the body investigated and, as might be expected, to a decrease 

in the heat transfer to the body. 

I.. Consider a body containing the source of a magnetic field that is 

placed in a uniform stream of compressible inviscid gas. Magneto-hydro- 

dynamic effects develop for very high speeds of the undisturbed stream, 

when ionization exists behind the intense shock wave. Therefore the Mach 

number of the undisturbed stream is assumed equal to infinity. The 
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electrical conductivity in the undisturbed stream is insignificantly 

small, and can be neglected. Behind the shock wave in the region of flow 

of the conducting gas the equations of magneto-hydrodynamics are valid, 

which are written for the cases of plane and axisyarnetric flow, for which 

the electric field vector is identically equal to zero [ 3 1. This leads 
to a simplification in writing Ohm's law and, which is essential, pre- 

serves the validity of the Bernoulli integral along stream lines, and 

the lhnov-Poynting vector of magnetic energy transfer proves to be identic- 

ally equal to zero. 

As is found from consideration of the shock wave, the Bernoulli con- 

stant, despite the presence of the magnetic field, is conserved even in 

transition across the shock wave, having in the entire flow a value equal 

to that in the undisturbed stream. In other words, for plane and axisym- 

metric flow Bernoulli's equation retains its original form for steady 

flow of an ideal gas. Taking into account the preceding remarks, the 

equations of magneto-hydrodynamics in dimensionless form in the region 

behind the shock wave take the form 

(vv) v + f VP = $ [(v x h) x hl, 
OLH” 

9= GK,V, 

divpv=O, div h = 0, roth = R'[v x h] li-1) 
47EciV~L 

R’ = c2 
1 

f+LL+ 
x-l p 

Here V, h, p and p are respectively the velocity vector, magnetic 

field vector, density and pressure, K is the ratio of specific heats, c 

is the speed of light in a vacuum and u is the specific electrical con- 

ductivity, depending in the general case on temperature and pressure. 

Characteristic magnitudes are V,, H*, Rm, RmVm2, which are respectively 
the speed of the undisturbed stream, the intensity at some point in the 

field, the density, and twice the dynamic pressure in the undisturbed 

stream. ‘Ihe space coordinates are referred to a characteristic length, L. 

Two dimensionless quantities appear in equations (1.11, the magnetic 

Reynolds number, R*, and the parameter, u, equal in order of magnitude 

to the ratio of magnetic to hydrodynamic forces. From estimates 14 1 it 
follows that even for very high airplane speeds (6-g km/set), R* takes 
values less than unity. 'lherefore the regime of flow is considered here- 

after for which the magnetic Reynolds number does not exceed the order of 

magnitude of one. As for the parameter 7, for such speeds and for values 

of the imposed magnetic field of several kilogauss and airplane altitudes 

above 40-50 km, calculations show that 7 attains and may exceed a value 

equal to tens. 

Ihe proposed solution is constructed for the case of strong influence 
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of the magnetic field upon the flow, when q is a large number (in actual 

cases of the order of ten). 'Ihe formulation of the problem of flow in the 

absence of the shock wave is given in 13 1. 

It follows that equations (1.1) are to be solved in conjunction with 

the equations for the magnetic field valid in the undisturbed stream and 

inside the body: 

div h -_ 0, roth=O (l-2) 

taking into account the presence of singularities of the magnetic field 

(currents creating the field) inside the body, boundary conditions at the 

body (the conditions of no normal flow and of continuity of the normal 

and tangential components of the field), and also considering the condi- 

tions at the shock wave and at infinity. The shock wave must be considered 

in some detail. Strictly speaking, the presence of the shock wave, which 

raises no doubts in the absence of the magnetic field, requires demonstra- 

tion in the present case. 

Actually, the conductivity of the stream behind the shock wave is 

finite, dissipation of magnetic energy arises, and the magneto-hydro- 

dynamic shock wave should therefore have finite thickness in view of the 

dissipative factors. However, an analysis of the structure of magneto- 

hydrodynamic shock waves, in which the field interacts with the stream 

only downstream as the gas becomes sufficiently heated and therefore 

ionized, shows the following. At first in a length of order l/R0 CR0 is 

the ordinary Reynolds number) the gas dynamic quantities change, while 

the magnetic field remains continuous. Since viscous terms were neglected 

in the equations, this shock is naturally regarded as occurring instant- 

aneously. This discontinuity in gasdynamic quantities is subject to the 

known relations for a shock wave in the absence of a magnetic field. 

After this, in a distance of the order of l/R* is developed an interaction 

of the stream and the magnetic field according to the laws of magneto- 

hydrodynamic shock waves. 'lhis situation is analogous to that encountered 

in a consideration of a shock wave with slow flow relaxation processes 

(induced by vibrational degrees of freedom of the molecule, dissociation, 

etc. 1. 

With R* - 1 the thickness of the magneto-hydrodynamic wave appears 

equal in order of magnitude to the characteristic dimension of the body, 

so that the concept of a thin wave loses its significance. Only the for- 

ward edge of this shock wave has significance - the original shock wave 

which separates the disturbed and undisturbed streams. 

Thus, follows the assertion made previously of the conservation of 

the Bernoulli constant on transition across the shock wave, since this 

transition, despite the presence of the field, takes place according to 

the ordinary laws for the hydrodynamics of an ideal gas in the absence 
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ideal gas in the absence of a field. 

The position of the shock wave, different from that occupied by it in 

the absence of a field, must be found from the solution of the problem. 

'Ihe conditions behind the shock wave front (indices 1 and 2 are used 

respectively for conditions ahead of and behind the shock wave), expressed 

as in (1.1) in dimensionless variables and taking the Mach number in the 

undisturbed stream to be infinitely large, have the form 

2 
pZ =C - sin23 

xfl : 9 
,,?L1 
$2 X-l 

(1.3) 

Here /3 is the local angle of inclination of the shock to the direction 

of the velocity vector of the undisturbed stream, and indices n and T de- 

note vector components respectively normal and tangential to the shock 

wave. 

Equations Cl.11 and (1.3) together with the conditions on the body 

and at infinity constitute the complete system of equations for the 

problem. l'he method of solution is based on the assumption that the per- 

turbed zone between the shock wave and the body is narrow which, as is 

well known, is equivalent to the assumption that the quantity t = (IC - l)/ 

(K + 1) is small compared with unity. This method was used earlier by 

Chernyl [2 ] and a number of other authors (see the survey [ 5 1. In order 

to exclude the inherent difficulty of this method, associated with the 

appearance of a point of cavitation on the surface of a curvilinear body 

I5 1, the flow is considered past bodies of rectilinear shape - the wedge 
and cone - where this method is known to give good results in the absence 

of a field. The essential simplification introduced in carrying out this 

method is the following. 'Ihe intensity h of the magnetic field may be 

written in the form h = h, + h’ where h, is the intensity measured in the 

absence of the flow, satisfying equations (1.2) everywhere, and h’ is the 

intensity of the induced field, satisfying the relations 

divh’ = 0, 

div h’ =: 0, 

rot h’ z-z I?” (V ,< h) in region 11 

rot h’ == 0 in regions. I, III 
(1.4) 

Regions I, II and II1 are shown in Fig. 1 where a wedge (or cone) is 

represented with flow in the direction of its axis. 'Ihe curve L, represents 

the shock wave. Since flow is considered past a body of finite size, 

region II where the conductivity is substantially different from zero has 
a dimension of the order of the length of the body; immediately behind 

the body the gas expands, its temperature approaches the temperature of 

the undisturbed stream and, consequently, the conductivity returns to 

zero. 'lherefore the space behind the body is referred to as region I. For 
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h'-the following relations can be obtained from equations (1.41: 

h’(r) = $ot \\\' '::";I'"' & (for three-dimensional flow) 

T (1.5) 
R’ 

.h’(r)= xrot Iv(R):<h(R)]Il~1&~dS (for plane flow) ss 
P 

Here P is the radius vector of a point at which the magnetic intensity 
is determined, R is 
correspondingly the 

dimension of r or S 

a variable radius vector, and T is the volume 6 

area) of disturbed flow (region II in Fig. 1). The 

along the surface of the body is of order unity in 

dimensionless variables, the thickness of the zone 

is of order E, and the integrand in relations (1.5) 

is of order unity. Hence h’- E, which permits the 

vector h to be replaced by the vector h, in equation 

(1.51, from which a closed expression is obtained 

for finding the induced field. lhen the circumstance 

that the induced field is of order t permits the 

vector h to be replaced by the given vector h, in the 

equations of motion of the gas with acceptable accu- 

racy. 'lhus the formulation of the problem is changed. 

Th e problems for finding the hydrodynamic and in- 

duced magnetic fields, which are found together in 

the general case, are separated in the new formula- 

tion, which renders the solution practicable. 

Fig. 1. 

2. Flow past a wedge. Equations (1.1) in a Cartesian coordinate 

system have the following form 

u ; + v ; + $2 = (uh, h, - vhx2) $ 

8PU 8PV -Y&---o, 
a?4 

(2.4) 

ah, ah, 
---= 
ax ay 

R’(uh, - z&r), ; + f + +I f = + 

'lbe x-axis is directed along the surface of the body, the origin of 
coordinates coincides with the vertex of the wedge and u and v are the 

components of the velocity vector along the x- and y-axis respectively 

(Fig. 1). 

It is assumed henceforth that the magnetic field vector is directed 

along the y-axis and has a constant modulus H*, chosen as the character- 

istic quantity for the magnetic field. 
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The length of the surface of the wedge is chosen as the characteristic 

length L. We estimate the quantities appearing in equations (2.1). The 

case is considered when a strong magnetic field acts: ?.- 6-l. Taking 

into account the ideas advanced in Section 1 regarding the induced 

magnetic field, we have for the components of the 

vector h 

h, - 8, h, = 1 f 0 (E) 

For x, y, ~1, v, p we have as in the case of no 

I- 1, Y--E, U- '1, D-E, 

From the second of equations (2.1) (projection 
axis) it follows that Jp/dy = O(l), from which p2 

magnetic field intensity 

magnetic field 

9-E -1 

of forces on the y- 
- p = O(E 1, where the 

difference between the pressure p2 behind the shock wave and the pressure 

p at any point in the disturbed flow is taken for fixed x. 

The equation of the shock wave is written y = Y(x), where Y(x) -6. 

Hence, according to equation (1.31, it follows that p2 = sin* 8 +O(C 1, 

where 0 is the semi-vertex angle of the wedge. Consequently, the pressure 

in the whole disturbed flow region is constant to within an accuracy oft, 

from which Jp/Jn A6 which is used in the first of the equations of motion 

(2.1). Finally, meglecting magnitudes c in comparison with unity, we ob- 

tain 

au au q uay+va&j=-up, p = sin20 

(2.2) 

The following two equations give the induced magnetic field 

S’ = 7 (4, h.'=-R*\u(r,+Zq+8(z) (2 31 
0 

where the functions y(x) and 6(x) can be found by turning to the ex- 

pression for h’ (1.5). Taking account of the fact that the width of the 

region of integration is of order 6, we obtain with acceptable accuracy, 

transforming (1.5) 

(2.4) 

It is easy to see from the expression (2.4) that the zone of disturbed 

flow is equivalent for the magnetic field considered to a vertical layer 
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(current sheet) of thickness of order c per unit length. For the hydro- 

dynamic field, according to (1.3) we obtain 

on the shock wave 

pz = sinzO, pz = r , u2 = ~0~9, V =dgcos6-esin0 at Y=y(r) (2.5) 2 

on the wedge 
?I=0 ate y= 0 GW 

We introduce in place of n and y the independent. variables x, $, 

taking $ as the stream function which satisfies 

3 ?J 
aT=pv, G= -put +=o on the surface 

of the wedge. 
(2.7) 

Then from equations (2.2) we obtain 

&A 9 
-=--7 ax P 

p = sin26, u2+ +I, &+@=o (2.8) 

Expressing l/p = t (l- u2)/sin20 and substituting this expression into 

the first of equations (2.81, taking (2.5) into account, we obtain an 

integral for u: 

u= th 
[ 
Inct&-&(z -X)J (2.9) 

where x = X($1 is the equation of the shock wave in the new independent 

variables. Hence for the density p we have 

sin20 
P= c ch2 

c 
lnctg; -&(z- W] (2.10) 

The integral for u is written for the case of a constant value of the 

electrical conductivity u in the entire flow region. It would not be 

difficult to write this integral considering variable u. Thus, using the 

dependence of conductivity upon temperature u = a,(T/TO)", where uO is 

the conductivity at a certain temperature To, and choosing as To the 
stagnation temperature, we obtain the dependence of conductivity on the 

dimensionless speed o = o,(l- u2Jn, from which the expression for u 

assumes the implicit. form 
u 

sin20 

s 

du 
x-X($) = -- 

&90 (1 - UZ)” 
(2.11) 

case 

where oO enters into the expression for qO. 'Ihe expression (2.11) is in- 

convenient for subsequent consideration. Therefore we take everywhere 

q = const, that is the integral (2.9) is used, although the analysis 
associated with the expression (2.11) develops in general analogous to 

the case q = const. 
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According to equation (2.9), for x > 5, where 

(2.12) 

the speed u on the surface of the wedge X(I,!J) = 0 changes sign, becoming 
a negative quantity. 

Physically this phenomenon is explained by the action of intense 

pondero-motive forces, directed contrary to the direction of motion. 

Fluid particles in the disturbed flow region are slowed down under the 

action of these forces until finally their speed becomes zero, after 

which a reverse flow arises at the surface of the body. The phenomenon 

connected with the appearance of reverse flow is analogous to the pheno- 

menon of viscous separation of a boundary layer, and may by analogy be 

termed the phenomenon of magnetic separation, and the point 4 the magnetic 

separation point. For x near to [, the given solution is inapplicable. 

However, using the integral (2.9) it is possible to determine, even though 

only qualitatively, the behavior of the flow in the vicinity of the 

magnetic separation point. 

In the neighborhood of x = 5 we have, resolving the expression for u 

into a series and retaining only first order terms, 

(2.13) &=_2!!_ (e - E - CO) i 
dX (4~) 

sin20 C=ddC I > +=o 

At the separation point p = 6-l sin’8. Consequently, according to 

(2.7) 

(2.14) 

Hence, integrating and taking into account the fact that $= 0 at 

Y= 0, we have. 

+ = Ef.3 e-WY (p7CY-1) 

For small y this gives $ = 7(x - 5)~. 

‘Ihe stream lines are depicted in Fig. 2, 

representing qualitatively the actual be- 

havior of the flow near the singular point. 

The zone behind the separation point 
(region S in Fig. 31 represents, apparently, 

a separated region of vertical flow. ‘lhe 
presence of this zone leads to an effective 

thickening of the body, and an increase in 

its drag. 

Fig. 

& 
--z 

2. 
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It is understood that the separated zone appears on the body only in 

the case 6 < 1. With increase of the field intensity (Q increasing) the 

L 
0 

-% 

I 

magnetic separation point moves upstream. For very 

strong fields the body may be almost entirely surrounded 

by the separated zone, which increases the drag of the 

body and, as might be expected, reduces the heat trans- 

fer to the body. For 5 << 1 it is proper to choose as 

the characteristic length not L, as was assumed every- 

where until now, but the abscissa of the separation 

point, that is the quantity [L. Denoting the parameter 

q corresponding to the new characteristic length by 

Q 

qt, we have according to (2.12) 

Y 
4E = Flnct& (2.15) 

For such a choice of the characteristic length we 
Fig. 3. have always q.--r-l, as was assumed in constructing the 

solution. Henceforth the quantity [L will always be 

chosen as the characteristic length. It follows that it should be emphas- 

ized that the phenomenon of magnetic separation is distinguished from the 

phenomen, known in the theory of an infinitely conducting gas (R* = 00 1, 
of "twisting" of the stream with the aid of a magnetic field, since in 

the latter case the magnetic field does not penetrate into the flow,form- 

ing on the edge of the stream as the so-called magnetic wall. 

In [l 1, where magneto-hydrodynamic flow was considered in the vicinity 

of the forward critical point, the existence of a singularity in the solu- 

tion was noted for certain values of the parameter q (in our notation), 

denoted as critical by the author. For values of p exceeding the critical, 

the solution loses its physical significance. 

It follows that it can be expected. in accord with the investigation 
made in the present work, that for super-critical values of the parameter 

q uniform flow near the critical point is impossible. Here a separated 

zone appears that is analogous to the corresponding phenomenon for flow 
past a blunt body with *needle,* with the difference only that the role 
of the “needle” is played by the magnetic field. 

In the case considered (R*- 1) the 1' ines of magnetic force pierce the 

flow region, exerting on the stream not the force of "magnetic pressure", 

but rather the force of magnetic friction [3 1. 

We find the form of the shock wave. 'lhe expression for V, according 

to the last of equations (2.8), has the form 

(2.16) 
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Carrying out the differentiation under the integral sign, with con- 

sideration of the expressions (2.9) and (2.101, we obtain 

where 

2’ =: - (2.17) 

d- lnctg$, b = EQc 
sin28 

The function X(JJ) is subject to determination from the boundary con- 

ditions at the shock wave. Use is made of the expression for the stream 

function in the undisturbed stream 

(I,== -zsin8--ycos8 (2.18) 

Hence, introducing the function 4'/ = Y(x), the inverse of X(ll/), and 

taking into account the continuity of the stream function at the shock 

wave, we have 

Y(z) = -xsinfl-Y((z)cosO (2.19) 

Hence, according to (2.5) 

V= -_-sinfl(1 +s) (2.20) 

Substituting the expression (2.20) into the left side of equation 

(2.17) and transforming the integral to an integration with respect to 

the variable s - X(I,!J), we obtain for the determination of dY/dx the 

linear integral equation 

d’Y 
- + sin0(1 +E)- 

4Gqe cos 0 %h[2a-Z2b (z-s)]dY 

dx sin40 -s 
-dS 

shz(2a -Lb (x - s)] ds 
(2.21) 

0 

'Ihe kernel of this integral equation becomes infinite at n = 1, s = 0. 

Analysis shows that Y(x) also becomes infinite in the vicinity of x = 1, 

having the logarithmic singularity Ye ln( x - 51 . 

In the vicinity of the magnetic separation point the solution (2.21) 
is inapplicable. 'Ihe distance from this point at which the solution loses 

force can be judged from the solution itself which becomes useless when 

the shock wave lies away from the body a distance large in comparison 

with t. The solution of equation (2.21) can be carried out by a method 

analogous to the method fo Euler for the solution of ordinary differential 

equations. It follows that the solution is carried out starting with the 

point n = 0. After the determination of dY/dx, and then also Y(X), the 

function Y(x) is determined, giving the equation of the shock wave from 
equation (2.191. It must be noted that at the tip of the wedge the angle 

of inclination of the shock wave is equal to the corresponding value for 

the case when the magnetic field is absent: 
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dYW -_= 
dx 

EtgO 

In Fig. 4 are presented the results of the solution Y(x) for 8 = 40’ 

(solid line), from which it follows that in the plane case the method 

presented gives low accuracy: the solution ceases to be good at x- 0.6 

for x = 1.4, and x -0.8 for K = 1.2. (The characteristic length has 

been chosen as Lt. the abscissa of the separation point.) As will follow 

from what comes later, in the axisymmetric case, the accuracy of the 

method is considerably greater. 

It is possible to obtain an analytical solution of equation (2.21) if 

the method of successive approximations is used: in so doing since the 

equation itself was obtained with an accuracy of c2, it is sufficient to 

take the first approximation. T k a ing as the zero approximation Y,,(X), 

the expression for the stream function in the absence of a field, we ob- 

tain 

= - sinO(1 + s) (2.22) 

Inserting the expression (2.22) under the integral sign in equation 

(2.21) and integrating twice, we obtain an expression for the first 

approximation Y1(n): 

Y,(z)= --sinO+ cos;;nA In[secOth (In&g;--)] (2.23) 

Hence the equation for the shock wave, according to (2.191, is 

(2.24) 

In Fig. 4 the dashed lines give the results of calculations with this 

formula. From the graph it follows that the expression (2.24) gives a 

good approximation to the exact solution in its region of applicability. 

We consider the forces acting on the body. Aside from the pressure 

force acting normal to the surface of the body, determined with an accu- 

racy of order E by Newton's formula, a 

magnetic force acts on the body that can 

be calculated according to [3 1. However, 

in the present case it is convenient to 

use the impulse theorem, the application 

of which gives the drag force referred to 

the surface of the wedge 

YW 

F’ = LSR,U& 
s 

(cos 0 - u) pu dy (2.25) 

0 

Fig. 4. 
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‘Ihis formula determines the force as a sumnation of the loss of im- 
pulse resulting from the action of the magnetic forces. ‘Ihe integral is 

taken for a certain fixed x, where it is assumed that [ << 1. letting 

n + 1 and transforming to an integration with respect to $, and then with 

respect to s = X($), we have 

F* = - LU?,U~ lim 
S{ 

cos 0 - th [ln ctg f - s$& (3; - s)]} $ ds (2.26) 
r-1 

0 

Carrying out the integration with an accuracy of c , we obtain 

2 f 
F* = LSRJJ, sm 0 ( In sin 0 

cos 9 + In ctg ‘,z e > (2.27) 

Projecting this force in the direction of motion, and comparing its 

projection, Q, with the hydrodynamic drag force, F, determined from 

Newton’s formula that acts on the portion of the wedge to the separation 

point, we obtain Q = 0.635 F for 8 = 40’. Such is the relation between 

the hydrodynamic and magnetic forces acting on the part of the wedge back 

to the separation point. It is difficult to determine the hydrodynamic 

and magnetic forces acting on the body as a result of the appearance of 

the separated region. It may be expected that the amount of drag contri- 

buted by the presence of the separated region is of the same order as the 

drag experienced by the body in the absence of a magnetic field. 

3. Flow past a cone. ‘Ihe solution for the cone is constructed in 

general just as for the wedge; therefore the exposition of the solution 

will be brief. The equations of motion in a spherical system of coordi- 

nates r and 9, where r is the radius vector and 8 the angle measured from 

the axis of the cone, have the form 

(3.1) 

f3r”pu sin a 
ar 

I arpusina _ O’ 
1 as - 9 g+$+y+$=; 

‘lhe origin of coordinates is at the vertex of the cone, and u and v 
are respectively the radial and tangential components of velocity. Ihe 

characteristic length will be taken to be the distance from the vertex 

of the cone to the magnetic separation point calculated, as will follow 
from what comes later , just as in the plane case from the relation (2.12). 

‘lhe equation for the induced magnetic field is not written down, since 

this field can be found from formula (1.51. Here it is also necessary to 

obtain, using the narrowness of the disturbed region, equations of the 

type (2.31 and (2.4) for the induced magnetic field. 

Setting 8 = 19 + 4, where 8 is the semi-vertex angle of the cone and 
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P ~6 we obtain, with just the same assumptions as in Section 2, the 

following equations: 

u$ ++g =+;, p = sin2 fJ 

$+;$ =I, 
~Wp~sin8 arpvsin0 =O 

(3.2) 

ar + 
aq 

As before, we take the imposed magnetic field perpendicular to the 

cone surface. The boundary conditions on the surface of the shock wave 

are 

ps:= sin20, pa=;, ug = cos 8, u2 = r~cosfl--ssintl t3a3Y 

where + = Q(r) is the equation of the shock wave line in the spherical 

coordinate system. As for plane flow, independent variables r and I$ are 

introduced, where $ is the stream function, determining 

In the new variables equation (3.2) takes the form 

aI4 Q 
ar= p --9 

'Ihe integral 

(2.10), where r 
equation of the 

According to 

Substituting into this expression for p and u from equations (2.9) and 

(2.10), after a series of transormations we obtain 

(3.4) 

p = sin2 8 ) u2+$=1, 6; + a$rtZputinQ = O (3’5) 

for u has the form (2.9), and the expression for p is 
appears in place of x, and R($) instead of X(+), the 

shock wave in the new independent variables. 

(3.5) the equation for v has the form 

(3.6) 

2, = _ 4Eaq$h [a - b (r- R)] ’ ch [2~ - 2b (r - R)] 

r sin50 s sh2 [Za - 2b (r - R)] d(lJ 
0 

Q 

+ 

4Eth[a--b(r-RR)] ’ 

s 
ddC 

r2 sin30 sh [2a - kb (r - R)] 
0 

where a and b are determined just as in (2.17). 

+ 

(3.7) 

We write the boundary conditions for the determination of the function 

R(+). ‘The expression for the stream function in the undisturbed stream 
has the form 

$= -$r2sin28 (3.3) 
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Hence on the shock wave with acceptable accuracy we have 

yP(r) = -+r2sin28 - rZsinO Cos@D(r) (3.9) 

Proceeding from this, the condition for v on the shock wave can, with 

consideration of (3.31, be written 

v=--L’x_ 
sin@ dr r2 

&sin@ (3.10) 

Since for r near zero Y-7-', on the shock wave at the tip of the cone 

we have 

to 

of 

We determine the shock 

verify the accuracy of 

Letting r + 0 in (3.7) we find 

the expression (3.7) vanishes, 

?I= 

V =- ssin0 atr=O (3.11) 

angle at the tip of the cone, which can be used 

equation (3.7). 

that the first term on the right side 

and the second term gives 

SqJE _-- 
rzsin Q 

(3.12) 

On the other hand, integrating the second of equations (3.4) we obtain 

for r near zero 

M = - ~cos6sinNP(r) (3.13) 

Finally for v on the shock wave we have the equation 

?I =: -2cose~((r) (3.14) 

This together with (3.11) gives an expression for the angle of incli- 

nation @Q of the shock at the tip of the cone: 

cD,=+t@ at r=O (3.15) 

in accord with the result obtained for a cone in the absence of a magnetic 

field 12 I. 

Using (3.9) and (3.15) we obtain the stream function on the shock wave 

in the absence of a magnetic field: 

Y=--+rr"sin28(1 +E) (3.16) 

We now write the equation for Y(r). Substituting the expression (3.10) 

into the left side of equation (3.7) and transforming to an integration 

with respect to s = R(r)), we obtain an integro-Bifferential equation for 

the determination of the function Y(r): 

ch [~a-- 2b(r -s)] E dS 

SW [Za -2b (r - s)] ds T- 
0 
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P 

4E ros 0 
+---- s 1 

r3 sin3 0 
J% ds 

sh [Za - Zb (r - s)] ds 
(3.17) 

0 

For the solution of equation (3.17) we apply the method of successive 

approximations, taking (3.16) as the zero approximation. We perform the 

integration on the right side of (3.17), divide equation (3.17) by r and 

integrate once more, taking account of 

lim $=-ysinztl 
P-+0 

(3.18) 

After a series of transformations we obtain the first approximation 

for Y: 

i1, {secBth[Inctg;-&z]}dz(3.19) 

0 

It is curious to note that the expression for Y,(r) found for the case 

of a wedge (2.23) is equal to the derivative with respect to r of Y, for 

the cone divided by sin 0. 'lhe equation of the shock wave now takes the 

following form, according to (3.9): 

aqqJ)=-=$ ih {seeOth[ lnct&--&z]}dz (3.20) 
0’ 

In Fig. 5 are shown the results of a calculation according to formula 

(3.20) of the equation of the shock wave for a cone with semi-vertex 

angle 8 = 40’ for K = 1.4 and K = 1.2. In Fig. 5 the shock wave is shown 

in a Cartesian coordinate system, the x-axis being directed along the 

surface, and the y-axis perpendicular to the body surface. As is clear 

from the calculations, this method gives significantly better results 

for the axisymmetric than for the plane flow. 

Fig. 5. 

The distance, y, between the shock wave and the body, which becomes 

infinite in the vicinity of the magnetic separation point for the case 

of the wedge, has the following form in the neighborhood of x = 1 in the 

present case: ylv (l- n) In (l- x); that is, the derivative dy/dx be- 

comes infinite but not the function itself. In connection with this, the 
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solution is applicable almost up to the magnetic separation point. 

The flow in the vicinity of the magnetic separation point is written 

analogously to the case of flow past a wedge. For the velocity we have 

an expression coming from the integral (2.9), where x and X(I~) are re- 

placed respectively by r and R(3), with consideration of the expression 

(3.16): 

u=- (3.21) 

From this and equation (3.4), transforming to a local Cartesian co- 

ordinate system s and y with origin at the magnetic separation point (and 

the y-axis directed perpendicular to the surface of the cone), we obtain 

CyJ 

;ty’ qe(s- ;1 v--+)sinfl (3.22) 

Integrating this equat ion, consider- 

ing that $= 0 at y = 0: 
(3.23) 

qr sin8 ,,=vc s-.4i/-7 - 

:! -17_+-&-ln s 

‘Ihe stream lines according to equa- 

tion (3.23) are shown in Fig. 6. It is 

understood that the solution is in- 

applicable for s > 0. Attention is 
Fig. 6. 

drawn to the fact that, in contrast to the plane case (Fig. 2), in the 

present case the streamlines do not go off to infinity, intersecting the 

y-axis at a finite distance from the body surface. 

We determine the magnetic drag force acting on the portion of the cone 

up to the magnetic separation point. According to the impulse theorem, 

after a series of transformations analogous to those carried out in 

Section 2, we have the following expression for the force 

(a = lnctgl,',O) 

Comparing this force with that found from Newton's formula for the 

hydrodynamic force, for 8 = 40' we obtain Q = 0.40 F. 

In conclusion the author tenders sincere thanks to A.A. Dorodnitsyn 

and A.A. Nikol'skii for most useful discussions of the work and valuable 

advice. The author also expresses his debt of sencere thanks to M.F. 

Budarin, K.E. Ivashkin and E.S. Riabinkov who carried out all the 

necessary numerical calculations. 
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